Testing of Small and Large Sign Support Systems FOIL Test Number: 92F014

U.S.Department of Transportation

Federal Highway Administration

Research and Development
Turner-Fairbank Highway Research Center
6300 Georgetown Pike
McLean, Virginia 22101-2296

15. Supplementary Notes

Contracting Officer's Technical Representative (COTR) - Richard King, HSR-20
16. Abstract

This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at $20 \mathrm{mi} / \mathrm{h}(8.9 \mathrm{~m} / \mathrm{s})$, test 92F014. The vehicle used for these test was a 1985 Honda Civic. The purpose of this test was to evaluate the low-speed safety performance of a dual post sign support with concrete foundations in weak soil. The posts were made from $4-\mathrm{in}$ by $6-\mathrm{in}$ ($102-\mathrm{mm}$ by $152-\mathrm{mm}$) pressure treated wood and were spaced $3.5 \mathrm{ft}(1.1 \mathrm{~m})$ apart. The performance evaluation was based on the latest requirements for breakaway supports as specified in Volume 54, Number 3 of the Federal Register dated January 5, 1989. These criteria specify, in part, that the occupant change in velocity must be $16 \mathrm{ft} / \mathrm{s}(4.9 \mathrm{~m} / \mathrm{s})$ or less, that the significant test article stub height remaining after impact be no more than 4 in (102 mm), and that there can be no occupant compartment intrusion. The test results indicate that the dual wood post sign support with concrete foundations in weak soil does not meet all of the applicable performance criteria for roadside safety appurtenances specified by the FHWA.
17. Key Words

Acceleration, occupant impact velocity, weak soil, vehicle, FOIL.
18. Distribution Statement

No restrictions. This document is available to the public through the National Technical Information Service Springfield, Virginia 22161

| 19. Security Classif. (of this report) |
| :--- | :--- | :--- | :--- |
| Unclassified |\quad| 20. Security Classif. (of this page) |
| :---: |
| Unclassified |\quad 21. No. of Pages $\quad 21$| 22. Price |
| :---: |

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names appear in this report only because they are considered essential to the object of the document.
(Izovisod Augusi 199:?)
APPROXIMATE CONVERSIONS FROM SI UNITS
 il soul orents 9100 siolew өrenbs $\begin{array}{lll}\text { square meters } & 10.764 & \text { square tot } \\ \text { square meters } & 1195 & \text { square yards }\end{array}$ heclares 0.48 acres square kilomelers 0.386 VOLUME milliliters 0034 $\begin{array}{ll}\text { miters } & 0264 \\ \text { liters } \\ \text { cubic metors } & 3571\end{array}$ $\begin{array}{ll}\text { cubic metors } & 3571 \\ & 1307\end{array}$ n
$\frac{n}{0}$
0
0
0
0
0 cubic leal
cubic yards告
 Cahrenthest
temporature
 00929 loot candios Cekcius
染 temperature candela/m² 02919 lool-Lamborts E and PRESSURE or STRESS poundiorco
poundlorce pe
 i

		S1* (M	SEN ME?	TR\|C)	ONVE	ION FACTO	18		
APPROXIMATE CONVERSIONS TO SI UNITS						APPROXIMATE CONVERSIONS FROM SI UNITS			
Symbol	When You Know	Mulliply By	To Find	Symbol	Symbol	When You Know	Mulilply By	To Find Sy	ymbol
inhydmı	LENGTH		millimeters moters meters kilometers	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~m} \\ & \mathrm{~m} \\ & \mathrm{~km} \end{aligned}$	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~m} \\ & \mathrm{~m} \\ & \mathrm{~km} \end{aligned}$	millimeters motors melers kilomoters	LENGTH	inchas foet yards mules	I'1I'y'11
	Inchas	25.4					0039		
	lout	0.305					3.28		
	yands	0914					1.09		
	miles	1.61					0.621		
	AREA						AREA	square inchus square feot square yards acres square miles	$\begin{aligned} & i 1^{2} \\ & \mathrm{t}^{2} \\ & \mathrm{ac} \\ & \mathrm{~m} \mathbf{1}^{2} \end{aligned}$
in^{2}	square inctros	645.2 "	square millimeters square melers squaro meters hectares squaro kilometers	$\begin{aligned} & \mathbf{m m}^{2} \\ & \mathbf{m}^{2} \\ & \mathbf{m}^{2} \\ & \mathbf{h a} \\ & \mathbf{k m ²} \end{aligned}$	$\begin{aligned} & \mathbf{m m}^{2} \\ & \mathbf{m}^{2} \\ & \mathbf{m}^{2} \\ & \mathrm{ha} \\ & \mathrm{k} \boldsymbol{m}^{2} \end{aligned}$	square millimetors square meters square meters hectares square kilomelers	00016		
h^{2}	square leel	0.093					10.764		
yor	square yards	0.836					1195		
ac	acres	0405					2.47		
$m 1^{2}$	square miles	2.59					0.386		
	VOLUME					VOLUME			$\begin{aligned} & 110 z \\ & 9 \cdot 11 \\ & 1 i^{\prime} \\ & y\left(t^{\prime}\right. \end{aligned}$
f or	fluid ounces gallons cubic feot cubic yards	$\begin{aligned} & 29.57 \\ & 3785 \\ & 0028 \\ & 0765 \end{aligned}$	milliliters hiters cubic moters cubic melers	$\begin{aligned} & \mathrm{ml} \\ & \mathbf{l}^{\prime} \\ & \mathbf{m}^{3} \\ & \mathbf{n}^{3} \end{aligned}$		millititers liters cubic metors cubic meturs	$\begin{aligned} & 0034 \\ & 0264 \\ & 3571 \\ & 1.307 \end{aligned}$	Hurd ouncas gallons cubic leal cubic yards	
gal					1				
${ }^{\mathbf{T}}$					m^{3}				
yop					m^{3}				
NOTE Volumes groater than 10001 shall be shown in m^{3}							MASS		
	MASS			$\begin{aligned} & \mathrm{g} \\ & \mathrm{~kg} \\ & \mathrm{Mg} \end{aligned}$					
OI	ounces pounds short tons (2000 lb)	$\begin{aligned} & 2835 \\ & 0454 \\ & 0907 \end{aligned}$	grams kilograms megagrans		$\begin{aligned} & \mathrm{g} \\ & \mathrm{~kg} \\ & \mathrm{Mg} \end{aligned}$		0035		0^{102}
lb						kilograms	2202	pounds ${ }^{\text {shont }}$ (2000 lb)	ib) $\stackrel{\text { in }}{5}$
T						mogagrams	1.103	short tons (2000 lb)	
	TEMPERATURE (exact)			${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	TEMPERATURE (exact)			
"F	Fahrunkein tomperaturo	$\begin{aligned} & 5(F 32) 9 \\ & \text { or }(F-32) 1.8 \end{aligned}$	Celcius tomperatura			Cekcius temperature	$1.8 \mathrm{C} \cdot 32$	Fahrentrult temporature	"F.
	ILLUMINATION					ILLUMINATION			
IcH	loot candlos loot Lamberts	$\begin{array}{r} 1076 \\ 3.426 \end{array}$	lux candela/m ${ }^{2}$	$\mathrm{cd} / \mathrm{m}^{2}$	Ix $\mathrm{cd} / \mathrm{m}^{2}$	lux candela/ m^{2}	$\begin{aligned} & 00929 \\ & 02919 \end{aligned}$	lool candios loot-Lamburts	$\begin{aligned} & \text { Ic } \\ & \text { H } \end{aligned}$
	FORCE and PRESSURE or STRESS			$\begin{aligned} & \mathrm{N} \\ & \mathrm{KPa} \end{aligned}$		FORCE and PRESSURE or STRESS			
	poundiorce	4.45	newlons		N	nowlons	0225	poundiorco	110
psi	poundlorce per square inch	6.89	kilopascals		kPa	kulopascals	0145	poundiorce per square inch	psi

[^0]Table of Contents.

1. SCOPE 1
2. TEST MATRIX 1
3. VEHICLE 1
4. SIGN SUPPORT 1
5. TEST RESULTS - $20 \mathrm{MI} / \mathrm{H}(8.9 \mathrm{M} / \mathrm{S})$, TEST 92 FO 0 2
6. CONCLUSION 3
7. REFERENCES 17

List of Figures.

Figure No. Page

1. Sketch of small sign support 4
2. Sketch of small sign support, attachment detail 5
3. Test photographs during impact, test $92 \mathrm{FOl4}$ 6
4. Summary of test 92 F014 7
5. Acceleration versus time, X-axis, test $92 F 014$ 8
6. Velocity versus time, X-axis, test $92 F 014$ 9
7. Force versus displacement, X-axis, test 92 F014 10
8. Occupant velocity and relative displacement versus time, X-axis, test 92F014 11
9. Pretest photographs of test 92 FO14 12
10. Additional pretest photographs of test 92 FOl4 13
11. Post-test photographs of test $92 F 014$ 14
12. Additional post-test photographs of test 92 FO14 15
13. Sketch of vehicle crush, test $92 F 014$ 16
List of Tables.
Table No.
14. Test matrix 1

1. SCOPE

This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at $20 \mathrm{mi} / \mathrm{h}(8.9 \mathrm{~m} / \mathrm{s})$, test 92 F 014 . The vehicle used for this test was a 1986 Honda Civic. The purpose of this test was to evaluate the low speed safety performance of a dual legged wooden 4×6 sign support. The performance evaluation was based on the latest requirements for breakaway supports as specified in Volume 54, Number 3 of the Federal Register dated January 5, 1989. These criteria specify, in part, that the occupant change in velocity must be $16 \mathrm{ft} / \mathrm{s}(4.9 \mathrm{~m} / \mathrm{s})$ or less, that the significant test article stub height remaining after impact be no more than 4 inches (102 mm), and that there can be no occupant compartment intrusion.

2. TEST MATRIX

The test was performed on a small sign support system. The test speed was $20 \mathrm{mi} / \mathrm{h}(8.9 \mathrm{~m} / \mathrm{s})$. The sign was buried in NCHRP Report Number 230, s-2 weak soil ${ }^{(1)}$. A summary of the test conditions is presented in table 1 .

Table l. Test matrix.						
Test Number	Test Vehicle	Test Weight (1b)	Test Speed (mi/h)	Test Article Description	Impact Location	
$92 F 014$	$\prime 86$ Honda Civic	1860	20	2 leg wood 4×6	center	

3. VEHICLE

The test vehicle was a 1986 Honda Civic two door hatchback with a manual transmission. Prior to the test, the vehicles' fluids were drained and its inertial properties measured. The vehicle was stripped of certain components which made space for the installation of test equipment. The vehicle was ballasted with a data acquisitions system, transducers, a brake system and weight plates (if necessary) to bring its inertial weight to approximately 1850 pounds (839 kg). The actual weight of the test vehicle was 1860 pounds (844 kg). After ballasting, the vehicles' inertial properties were remeasured.

4. SIGN SUPPORT

The sign support system consisted of two 4 -in by 6 -in (102 -mm by $152-\mathrm{mm}$) wooden legs $13 \mathrm{ft}(4.0 \mathrm{~m})$ long. The actual dimensions of the sign legs were 3.5 in by 5.5 in (89 mm by 140 mm). The wooden legs were made from pressure treated southern yellow pine. Two feet (0.9 m) of each leg was inserted inside a steel sleeve which was cast inside an 18 -in (0.457 -m) diameter concrete footer. The footers were $2.5 \mathrm{ft}(0.8 \mathrm{~m})$ deep and were buried in NCHRP Report $230 \mathrm{~S}-2$ weak soil (sand). Attached to the 2 legs was a 4 -ft high by $10-\mathrm{ft}(1.2-\mathrm{m}$ by $3.0-\mathrm{m})$ wide aluminum sign panel. The final panel was assembled from four $1-\mathrm{ft}$ by $10-\mathrm{ft}(0.3-\mathrm{m}$ by $3.0-\mathrm{m})$ extruded aluminum panels and was installed $7 \mathrm{ft}(2.1 \mathrm{~m})$ above ground. The two legs were installed $3.5 \mathrm{ft}(1.1 \mathrm{~m})$ apart. The whole sign support system was assembled and the
concrete footers cast. The concrete footers were inserted in a hole in the weak soil. The hole was backfilled in 6-in ($0.152-\mathrm{m}$) lifts and compacted until the final grade was reached. The sign support was then inserted inside the footers. Figure 1 and figure 2 are drawings of the sign support system.

5. TEST RESULTS - $20 \mathrm{MI} / \mathrm{H}(8.9 \mathrm{M} / \mathrm{S})$, TEST $92 \mathrm{FOl4}$

The test vehicle was accelerated to $20.9 \mathrm{mi} / \mathrm{h}(30.6 \mathrm{ft} / \mathrm{s}(9.3 \mathrm{~m} / \mathrm{s})$) prior to impacting the sign support. The centerline of the test vehicle was aligned with the mid point between the two sign legs.

The bumper made contact with both sign legs and began to collapse. The brunt of the impact occurs to outside edge of the bumper supports on either side of the test vehicle. The bumper had collapsed to the headlight socket 0.020 s into the event. During the collapse of the bumper, the wooden legs were bowed outward away from the vehicle. At 0.022 s the wooden legs began to fracture. The right leg fractured approximately $3 \mathrm{ft}(1.2 \mathrm{~m}$) above ground. The left leg began to fracture $4 \mathrm{ft}(0.9 \mathrm{~m})$ above ground. Thirty milliseconds into the event, the right leg had broken completely at $3 \mathrm{ft}(0.9 \mathrm{~m}$) and had begun fracture down at the steel sleeve insert. The left had not broken completely at $4 \mathrm{ft}(1.2 \mathrm{~m})$. The right leg had completely fractured in two places 0.050 s after initial contact. The left leg continued to resist fracture but had begun to split vertically. At 0.114 s the left leg continued to split vertically and the vehicle continued to push on the lower segment of the wooden leg. The moment exerted on the left leg by the vehicle pushing 19 in (0.483 m) above ground did not fracture the wood at the ground line, instead the soil collapsed in front of the foundation and the concrete foundation rotated up towards the surface. Because the left leg never completely fractured and the left foundation rotated well after the right leg failed, the vehicle yawed counter-clockwise approximately 20 degrees. No secondary impact occurred between the vehicle and the sign support. The remainder of the wood legs with the panel attached fell backwards away from the vehicle.

Damage to the vehicle consisted of minor damage to the bumper. The damage was to plastic bumper parts and not to any structural members. The maximum crush measured after the test was recorded to be 4 in (0.102 m). None of the sign components impaled the occupant compartment.

Damage to the sign consisted of two fractured wooden legs. The upper sections of the legs remained attached to the sign panel. A $4-\mathrm{ft}(1.2-\mathrm{m})$ section of the left leg remain inside the concrete footer which had rotated up and become partially unburied. The right leg fractured in two places, at ground level and $3 \mathrm{ft}(0.9 \mathrm{~m})$ above ground level. Two feet (0.6 m) of the right leg remain inside the concrete footer. The sign panel was in good condition after the test.

The occupant impact velocity using the $2-\mathrm{ft}(0.6-\mathrm{m})$ flail space model outlined in NCHRP Report Number 230, was determined to be $19.8 \mathrm{ft} / \mathrm{s}(6.0 \mathrm{~m} / \mathrm{s})$. The occupant impact velocity was reached 0.153 s into the crash event. The 10 ms ridedown acceleration was determined to be 1.5 g 's. The peak force (300 Hz data) for the impact event was 14.8 g 's $(27.5 \mathrm{kips}(122 \mathrm{kN})$). Because the sign stopped the vehicle, the vehicle change in velocity was equal to the impact velocity. The actual vehicle change in velocity was calculated to be $29.5 \mathrm{ft} / \mathrm{s}(9.0 \mathrm{~m} / \mathrm{s})$.

Photographs during the impact event are presented in figure 3. A summary of the impact conditions and the test results is presented in figure 4. Figures 5 through 8 are plots of data collected during the test. Pre- and
post-test photographs of the vehicle and sign support system are presented in figures 9 through 12. Figure 13 is sketch of the vehicle static crush recorded after the test.

6. CONCLUSION

The test results indicate that the small sign support system does not meet all of the applicable criteria for the low-speed test in weak soil. There was no occupant compartment intrusion and no significant stub remaining after the test, however the occupant impact velocity was $19.8 \mathrm{ft} / \mathrm{s}(6.0 \mathrm{~m} / \mathrm{s})$ which is not less than or equal to the $16 \mathrm{ft} / \mathrm{s}(4.9 \mathrm{~m} / \mathrm{s})$ limit specified by the FHWA.

Figure 2. Sketch of small sign support, attachment detail.

（5／7戸）イコ下プナシヘ

（epuegnoys）
（qT）こつエロ』
TEST NO. 92 F014

Time (seconds)

Figure 12. Additional post-test photographs of test $92 F 014$.

60"
Max $=4.0^{\prime \prime}$
Post test
$1 \mathrm{in}=2.54 \mathrm{~cm}$

Figure 13. Sketch of vehicle crush, test 92 FO14.

8. REFERENCES

(1) Michie, Jarvis D., "Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances," National Cooperative Highway Research Program Report Number 230, March 1981.

[^0]: Si is the symbol tor the International Systom ol Units Appropriate
 rounding should be made to comply with Saction 4 ol ASTM E380

